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Abstract
Jasmin is a programming language for high-speed and high-assurance

cryptography. Correctness proofs of Jasmin programs are typi-

cally carried out deductively in EasyCrypt. This allows generality,

modularity and composable reasoning, but does not scale well

for low-level architecture-specific routines. CryptoLine offers a

semi-automatic approach to formally verify algebraically-rich low-

level cryptographic routines. CryptoLine proofs are self-contained:

they are not integrated into higher-level formal verification de-

velopments. This paper shows how to soundly use CryptoLine to

discharge subgoals in functional correctness proofs for complex

Jasmin programs. We extend Jasmin with annotations and provide
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an automatic translation into a CryptoLine model, where most com-

plex transformations are certified. We also formalize and implement

the automatic extraction of the semantics of a CryptoLine proof

to EasyCrypt. Our motivating use-case is the X-Wing hybrid KEM,

for which we present the first formally verified implementation.
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1 Introduction
Cryptographic libraries are a cornerstone of computer security.

As such, it is essential that these libraries are correctly imple-

mented. Unfortunately, guaranteeing functional correctness of cryp-

tographic implementations remains extremely challenging. There-

fore, there is a growing emphasis on using program verification for

proving correctness of these implementations [5]. At one end of the

spectrum, automated verification tools such as CryptoLine [10, 14]

have been used to verify challenging and highly optimized subrou-

tines, including multi-precision arithmetic, elliptic curve cryptog-

raphy, and core components in lattice-based cryptography such

as the Number Theoretic Transform. However, these approaches

are limited to specific classes of programs—informally, straight-line

code with statically resolved memory accesses, and are not compo-

sitional. At the other end of the spectrum, interactive verification

tools such as EasyCrypt have been used to verify full algorithms,

including high-speed implementation of the SHA-3 standard [2]

and the recent FIPS-203 ML-KEM standard [1, 3]. However, these

approaches are labour intensive and do not scale well for low-level

subroutines. The goal of this work is to integrate both approaches

in a single verification framework.

Contributions. This paper develops sound foundations and tool-

ing for combining deductive and automated program verification,

namely EasyCrypt and CryptoLine, and shows how the resulting

framework helps verifying cryptographic implementations written

in the Jasmin language. Our approach is based on the following

steps and illustrated by a diagram in Figure 1a. The traditional proof

development architecture for a Jasmin source program is shown on

the left of the diagram. A Jasmin source file is compiled to assem-

bly by the certified Jasmin compiler, which means that functional

correctness established at the source will also hold at the assembly

level. In parallel, a model of the source program is extracted to the

EasyCrypt theorem prover, where the functional correctness proof

for the source code is machine-checked.

In this paper we extend the Jasmin language and compiler to

allow integration of CryptoLine in the tool-chain:

• We extend the Jasmin programming language with assume and
assert statements via annotations in the source code. These state-

ments allow users to state functional correctness contracts using

an extension of the Jasmin language of expressions, which is gen-

eral enough to write the annotations required for a CryptoLine-

based correctness proof. Furthermore, our annotation language

is higher-level than that used typically in CryptoLine proofs, as

it includes big operators for summation and universal quantifica-

tion, and so the resulting contracts are more convenient to work

with in high-level proofs.

• We implement new verified compilation steps in the Jasmin com-

piler (these are specific to the new proof methodology we intro-

duce here) that perform a Jasmin-to-Jasmin transformation that

we call simplification. The resulting simplified Jasmin programs

are equivalent to the source, but they are stripped of all high-

level constructs, including branching, loops, arrays, etc., and they

are also in static single-assignment form. However, we retain

function calls to allow for a modular proof relying on CryptoLine.

Furthermore, and crucially for this work, the compiler is proved

to preserve the semantics of annotations.

• We state and prove a soundness meta-theorem that justifies

the methodology illustrated in Figure 1a. The annotated Jasmin

source program is simplified and then pretty-printed to Crypto-

Line. If CryptoLine accepts the program, then this yields a partial

correctness result. Here the proof is partial for two potential rea-

sons: 1) the possible use of assume statements in the proof and 2)

the fact that verification in CryptoLine is done independently for

each function in the call tree. Our meta-theorem then shows that

the certified simplification of Jasmin programs permits lifting

the CryptoLine proof back to the source Jasmin program.

• We extend the extraction to EasyCrypt, so that it includes the

partial correctness proved by CryptoLine as axioms. Again, the

way in which the extraction to EasyCrypt is performed is justified

by our meta-theorem. As a result, the effort of constructing a

full EasyCrypt proof for the source Jasmin program is much

reduced. In particular, we can synthethize the EasyCrypt proof

that justifies our modular verification in CryptoLine of each

function in the call tree. This means that the only non-trivial

goals that remain to prove in EasyCrypt concern justifying the

assumptions made when carrying out the CryptoLine proof.

The benefits of our approach are numerous, and they affect both

the users of Jasmin and the users of CryptoLine:

• Functional correctness proofs for complex Jasmin programs can

now be factored into high-level compositional reasoning—which

is natural in EasyCrypt and typically carries over across imple-

mentations for different architectures—and automatic proofs for

low-level functions in which CryptoLine excels.

• This level of automation still retains the strong end-to-end guar-

antees of EasyCrypt proofs: the program has a well defined se-

mantics for all valid inputs and is correct with the input/output

behavior given by the pre- and post-condition. We achieve this

by making sure that all assumptions made in CryptoLine proofs,

which are the responsibility of the user, need to be justified.

• The way in which we carry out CryptoLine proofs permits com-

posing them using EasyCrypt. This is necessary for our end-goal

of integrating the CryptoLine results in more complex proofs, but

it also has implications for CryptoLine users. For example, one

can use the approach proposed in this paper to carry out different

proofs in CryptoLine for the same function, corresponding to

different cases/pre-conditions, and then use EasyCrypt to com-

bine these proofs into a single one that aggregates the various

cases. Similarly, EasyCrypt can be used to justify the modular

reasoning about various functions in a call tree.

• Effort can be shared and reused across different tools and teams.

We illustrate our approach with two examples. The first and main

motivating example is X-Wing, where we use previous CryptoLine

proofs of X25519 subroutines and compose them with previous

EasyCrypt proofs of ML-KEM and SHA3. The second example

is ML-KEM NTT, where we illustrate modular reasoning where

parts of the call tree are justified in CryptoLine and other parts in

EasyCrypt. Furthermore, we also show how we can reuse existing

CryptoLine proofs for the NTT by bridging in EasyCrypt the al-

gebraic description of the NTT (based on the Chinese-Remainder

Theorem) used in CryptoLine contracts to the DFT-based descrip-

tion of the NTT used in the EasyCrypt proof of correctness wrt the

ML-KEM standard.
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(a) Diagram of the extended tool-chain.

Algorithm expandDecapsulationKey(sk) :
(coins𝑀 , sk𝑋 ) ← SHAKE256(sk, 96)
(pk𝑀 , sk𝑀 ) ← ML-KEM-768.KeyGen( ; coins𝑀 )
pk𝑋 ← X25519(sk𝑋 , X25519_BASE)
Return (sk𝑀 , sk𝑋 , pk𝑀 , pk𝑋 )

Algorithm KeyGen( ) :
sk $← {0, 1}256
(sk𝑀 , sk𝑋 , pk𝑀 , pk𝑋 ) ← expandDecapsulationKey(sk)
Return ( (pk𝑀 , pk𝑋 ), sk)

Algorithm Encapsulate( (pk𝑀 , pk𝑋 ) ) :
𝑒𝑘𝑋

$← {0, 1}256
cph𝑋 ← X25519(𝑒𝑘𝑋 , X25519_BASE)
shk𝑋 ← X25519(𝑒𝑘𝑋 , pk𝑋 )
(shk𝑀 , cph𝑀 ) ← ML-KEM-768.Encap(pk𝑀 )
shk ← SHA3-256(shk𝑀 , shk𝑋 , cph𝑋 , pk𝑋 , label𝑋 )
Return (shk, (cph𝑀 , cph𝑋 ) )

Algorithm Decapsulate(sk, (cph𝑀 , cph𝑋 ) ) :
(sk𝑀 , sk𝑋 , pk𝑀 , pk𝑋 ) ← expandDecapsulationKey(sk)
shk𝑀 ← ML-KEM-768.Decap(cph𝑀 , sk𝑀 )
shk𝑋 ← X25519(sk𝑋 , cph𝑋 )
shk ← SHA3-256(shk𝑀 , shk𝑋 , cph𝑋 , pk𝑋 , label𝑋 )
Return shk

(b) The X-Wing Hybrid KEM

Trusted Code Base. The TCB includes, of course, Coq, EasyCrypt

and Cryptoline (where the latter two include SMT and CAS solvers).

Furthermore, it includes the non-certified parts of the Jasmin com-

piler code, including parsing, typing and the safety checker, as well

as extraction to EasyCrypt. This is inherent to the use of all the

tools above. Specific to our work, the TCB is extended with a new

form of EasyCrypt extraction for Jasmin programs that is aware

of annotations and their semantics. Furthermore, we also create

a new pretty-printing from Jasmin to CryptoLine. Both of these

mechanisms are assumed to satisfy the properties required by our

formal framework and Theorem 6 in particular.

Everything that we have not listed above in the TCB is machine-

checked either in Coq or in EasyCrypt, as follows. The main ex-

tensions to the Jasmin formalization in Coq are: syntax, semantics,

and compilation of annotations; verified compilation from Jasmin

to “simplified Jasmin” (straight-line, array-free, etc.), which corre-

sponds to Theorem 1; a new theorem (corresponding to Theorem 2)

establishing reflection of traces from target to source. A new Easy-

Crypt library, proved once and for all, includes the following general

results: definitions of trace types and trace validity; relations be-

tween notions of validity (Theorem 3). For each proof, the extraction

to EasyCrypt, generates lemmas that can be easily discharged to

guarantee that no mistakes are made in applying Theorems 4 and 5:

proving that the program is well annotated for assumes (hypothesis

3 in Theorem 5); proving that the program is well annotated and

therefore functionally correct (Theorems 4 and 5 assuming safety

has been checked, and assuming that hypothesis 2 in Theorem 5

has been checked by CryptoLine).

Related work. There is a large body of work that uses program

verification for proving correctness of cryptographic code [5]. A

majority of this work, including [4, 15, 17] and prior work on Jas-

min, follows the classic approach of deductive verification. The

design of CryptoLine [14] features automation over scalability and

compositionality, so in this work we explore the possibility of com-

bining two verification frameworks in a sound way. An alternative

approach would have been to extend EasyCrypt directly with the

ability to carry out CryptoLine-style proofs, which is the spirit of

the work done in [16] for the Dafny framework. Another traditional

approach is to generate correct programs from specifications. This

is the approach followed by FIAT Crypto [9]; recently the approach

has been extended with mechanisms to synthesize correct and opti-

mized implementations [11]. This approach is appealing but is not

applicable to the complex implementations that we consider.

Structure of the paper. Section 2 provides further motivation via

an example. Sections 3 to 5 justify the theoretical soundness of our

approach and the extensions to the Jasmin compiler. Sections 6 and 7

describe our implementation of the interactionwith CryptoLine and

EasyCrypt, respectively. Finally, Section 8 describes the examples

and Section 9 adds some concluding remarks.

2 Motivating Example
Introducing X-Wing. To motivate our approach we will use X-

Wing [6, 8], a recently proposed hybrid Key Encapsulation Mecha-

nism (KEM). X-Wing uses ML-KEM as a blackbox. ML-KEM was

recently standardized by NIST as FIPS-203 [13] (Module-Lattice-

Based Key-Encapsulation Mechanism). The goal of the X-Wing

design is to provide a fallback to the security of ML-KEM, and

guarantee at least classical security in the unlikely scenario that

a weakness is uncovered in the post-quantum standard. To this

end, X-Wing runs an elliptic-curve-based KEM-like construction in

parallel with ML-KEM, so that the X-Wing shared key is derived

using contributions from both the classical and the post-quantum

constructions. This classical layer is based on the X25519 elliptic

curve [12], and the overall design is optimized for performance: the

final key is derived by passing to the final SHA-3 based key deriva-

tion function just enough information to guarantee security, while

requiring only a single block absorption for the hash computation.

The security analysis of X-Wing [6] shows that the construction

is secure against post-quantum adversaries if ML-KEM is secure,

and that it is secure against classical adversaries if a variant of the

computational Diffie-Hellman problem holds in the X25519 group.
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The X-Wing construction is given in pseudocode in Figure 1b.
1

Our goal is to obtain a high-speed and high-assurance imple-

mentation of X-Wing with minimal effort, which means reusing as

much as possible pre-existing implementations and functional cor-

rectness proofs. Looking at the design of the construction, there are

three components that need consideration: ML-KEM-768, X25519,

and two functions in the SHA3 family. Our starting point are the

pre-existing formally verified implementations of ML-KEM [1, 3]

and SHA3 [2]. These implementations are written in the Jasmin pro-

gramming language for x86-64, and the corresponding functional

correctness proofs are written in the EasyCrypt proof assistant [7].

However, the functional correctness of the existing Jasmin imple-

mentations of X25519 were not yet formally verified.

X25519 implementations. Implementations of X25519 are perva-

sive in cryptographic libraries, and they are typically structured in

two layers: low-level leaf functions that perform multi-precision

arithmetic modulo prime 𝑝 = 2
255

-19 and encoding/decoding rou-

tines, whereas a higher level function performs the relevant scalar

multiplication operation in the group of elliptic curve points. The

top level interface for this operation, shown as X25519(·, ·) in Fig-

ure 1b, takes a 32-byte scalar 𝑢 and a 32-byte representation of an

elliptic curve point 𝑃 , and returns the 32-byte representation of 𝑢𝑃 .

The challenging aspect of proving the correctness of an X25519

scalar multiplication operation resides in the multi-precision com-

putations performed in the leaf functions. Indeed, in a tool such as

EasyCrypt, once the leaf functions have been proved to perform the

correct low-level computations, it is relatively straightforward to

argue that the top-level function is calling the low-level functions

in the correct sequence using Hoare logic. Furthermore, this high-

level proof is essentially the same for any target architecture and

multi-precision representation of finite-field elements. On the other

hand, proving the correctness of the multi-precision arithmetic

implementation requires significant effort in an interactive proof,

which is hard to amortize across implementations for different tar-

get architectures and choices of finite field element representations.

Indeed, for such low level functions, searching for an automated

proof methodology is well justified.

Pre-existing CryptoLine proof. In this work we consider Cryp-

toLine [10, 14], a tool that allows precisely such an automated proof

methodology. CryptoLine has been specifically designed for the ver-

ification of low-level implementations of mathematical constructs,

including multi-precision arithmetic. Moreover, the CryptoLine

set of examples includes proofs of the openssl implementation of

X25519 finite field operations in x86-64 assembly, which are very

close to the Jasmin implementation of the same functions. To illus-

trate this similarity, Figure 2 shows snippets from three versions

of a routine that performs squaring modulo 2
255

-19. The first one,

on the left, is the Jasmin implementation we are interested in for-

mally verifying. In the middle we show assembly code taken from

the openssl implementation of the same routine.
2
Finally, on the

right, we can see part of the CryptoLine proof script for the openssl
assembly.

3
The snippets show part of the squaring routine that

1
In this paper we follow the specification given in the Internet Draft [6, 8]

2
https://github.com/openssl/openssl/blob/master/crypto/ec/asm/x25519-x86_64.pl

3
https://github.com/fmlab-iis/cryptoline/blob/master/examples/openssl/x25519/

x86_64/x25519_fe64_sqr.cl

for i = 0 to 3 {
( hi, lo ) = #MULX ( _38, r[i] );
of, h[i] = #ADOX ( h[i], lo, of );
cf, h[i+1] = #ADCX ( h[i+1], hi, cf );
}

( r[0], lo ) = #MULX ( _38, r[3] );
of, h[3] = #ADOX ( h[3], lo, of );
cf, r[0] = #ADCX ( r[0], z, cf );
of, r[0] = #ADOX ( r[0], z, of );

_,_,_,_,_,lo = #IMULri ( r[0], 38 );
cf, h[0] += lo;
cf, h[1] += z + cf;
cf, h[2] += z + cf;
cf, h[3] += z + cf;
_, z -= z - cf;
z &= 38;
h[0] += z;

mulx %r12 ,% rax ,% rbx
adcx %rax ,% r8
adox %rbx ,% r9
mulx %r13 ,% rax ,% rbx
adcx %rax ,% r9
adox %rbx ,% r10
mulx %r14 ,% rax ,% rbx
adcx %rax ,% r10
adox %rbx ,% r11
mulx %r15 ,% rax ,% r12
adcx %rax ,% r11
adox %rd i ,% r12
adcx %rd i ,% r12
mov 0 x10 (% r sp ) ,% r d i
imul %rdx ,% r12
add %r12 ,% r8
adc $0x0 ,% r9
adc $0x0 ,% r10
adc $0x0 ,% r11
sbb %rax ,% rax
and $0x26 ,% rax
add %rax ,% r8

mull rbx rax rdx r12;
adcs carry r8 r8 rax carry;
adcs overflow r9 r9 rbx overflow;
mull rbx rax rdx r13;
adcs carry r9 r9 rax carry;
adcs overflow r10 r10 rbx overflow;
mull rbx rax rdx r14;
adcs carry r10 r10 rax carry;
adcs overflow r11 r11 rbx overflow;
mull r12 rax rdx r15;
adcs carry r11 r11 rax carry;
adcs overflow r12 r12 rdi overflow;
adcs carry r12 r12 rdi carry;
mull dontcare r12 rdx r12;
assert true && and [dontcare = 0@64,carry=0@1,overflow=0@1];
assume and [dontcare = 0,carry=0,overflow=0] && true;
adds carry r8 r8 r12;
adcs carry r9 r9 0x0@uint64 carry;
adcs carry r10 r10 0x0@uint64 carry;
adcs carry r11 r11 0x0@uint64 carry;
ghost carryo@bit: carryo = carry && carryo = carry;
sbbs carry rax rax rax carry;
assert true && carry = carryo;
assume carry = carryo && true;
mov overflow carry;
not zero@bit carry;
and rax@uint64 rax 0x26@uint64;
assert true && or [ and [carry=0@1, rax=0@64], and [carry=1@1, rax=0x26@64]];
assume rax = carry∗0x26 && true;
adds carry r8 r8 rax;
assert true && carry=0@1;
assume carry=0 && true;
{ eqmod (limbs 64 [r8, r9, r10, r11]) (limbs 64 [a0, a1, a2, a3] ∗ limbs 64 [a0, a1, a2, a3])

((2∗∗255)-19) && true }

Figure 2: Snippets of three implementations of the same
X25519 basic subroutine, which computes the square of a 32-
byte integer represented as 4x64-bit registers modulo 2

255−19.
Top Left: Jasmin code. Top Right: openssl assembly. Bottom:
CryptoLine proof script for openssl assembly.

performs modular reduction from a 64-byte intermediate result to

the 32-byte final result, i.e., it computes the modular reduction of

𝑎2 (mod 2
255 − 19) where 𝑎 ∈ [0; 2256) and is represented as four

(packed) 64-bit words. It is clear that the Jasmin and openssl code

https://github.com/openssl/openssl/blob/master/crypto/ec/asm/x25519-x86_64.pl
https://github.com/fmlab-iis/cryptoline/blob/master/examples/openssl/x25519/x86_64/x25519_fe64_sqr.cl
https://github.com/fmlab-iis/cryptoline/blob/master/examples/openssl/x25519/x86_64/x25519_fe64_sqr.cl
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are doing essentially the same thing, and this pattern repeats itself

with minor differences in scheduling and instruction selection for

the entire implementation of the X25519 leaf function. Our expec-

tation is therefore that the CryptoLine proof actually applies to the

Jasmin code, and our motivation in this paper is to allow reusing

such proofs in a sound way.

Let us now take a closer look at the snippet of the CryptoLine

proof script shown in Figure 2 (right). At the end of the code, one

can see the post-condition. Like all predicates over CryptoLine

program states, it has two parts 𝑄𝐴 &&𝑄𝑅 , where 𝑄𝐴 is called an

algebraic predicate and 𝑄𝑅 is called a range predicate. Algebraic

predicates refer to the (in this case, unsigned) integer interpretation

of the values of program variables, whereas range predicates refer

to program variables as fixed-length bit vectors.

In this example, 𝑄𝑅 is the trivial true post-condition, and the

algebraic post-condition 𝑄𝐴 is the congruence 𝑎2 ≡ 𝑟 (mod 2
255 −

19), where 𝑎 is the integer represented by inputs to the function

(𝑎0, 𝑎1, 𝑎2, 𝑎3), and 𝑟 is the integer represented by the function out-

puts (𝑟8, 𝑟9, 𝑟10, 𝑟11). Here, all inputs and outputs are 64-bit values

interpreted as unsigned integers, as the representation uses packed

64-bit limbs, s.t. for example 𝑎 :=
∑

3

𝑖=0 2
64𝑖𝑎𝑖 .

The CryptoLine proof consists of two parts: a model of the pro-

gram, consisting of a sequence of CryptoLine instructions, and a

set of annotations that introduce ghost variables and insert assert
and assume statements.

4
The use of assert and assume statements

in this proof is illustrative of an important point about CryptoLine

proofs. Assert statements (in this case, of range expressions) are

required by CryptoLine to hold in all relevant executions. On the

other hand, assume statements can be used to constrain the set of

executions for which the proof is required to hold (i.e., possibly

beyond the restriction imposed by the pre-condition): an algebraic

assumption such as those introduced in the current proof is taken as

an additional equality that can be assumed to hold over the integers

when the program is being checked for correctness. A closer look

shows that algebraic assume statements in Figure 2 (bottom) are ac-

tually implied by the range assert statements inserted immediately

before them, but this is not checked by the tool and is left to the

user to confirm by inspection. This approach is extremely powerful,

as it permits using the power of the SMT solver backends (used to

discharge) range predicates to simplify the algebraic model (e.g.,

by incorporating an equation that sets a carry variable to 0) and

can be critical to enable an automatic proof based on a Computer

Algebra System (CAS).

Our goal of using CryptoLine to prove properties of Jasmin

programs therefore raises three questions:

(1) How to construct a CryptoLine model of a Jasmin program?

(2) How to annotate the CryptoLine model of the Jasmin program?

(3) How to integrate the CryptoLine proof in higher-level proofs.

We now address each of these questions in turn.

Constructing the CryptoLine model. CryptoLine models must

satisfy a set of strict requirements, such as being loop and branch

free, to be correctly typed wrt to bit vector sizes and variable signed-

ness, and to satisfy a notion of safety that, intuitively, means that

there are no integer overflows in any of the bit vector computations.

4
For a more detailed explanation of the CryptoLine semantics, please refer to Section A

param bool sub = false; param int MAX = 100; param int LEN = 2;
abstract predicate int u16i(u16);

fn source(reg ptr u16[LEN] a b)→ reg ptr u16[LEN]
requires {\all (i \in 0:LEN) (0 <= a[i] && a[i] < MAX)}
requires {\all (i \in 0:LEN) (0 <= b[i] && b[i] <= a[i])}
ensures {\all (i \in 0:LEN) (0 <= u16i(result.0[i]) &&

u16i(result.0[i]) <= 2∗MAX)}
{ for i = 0 to LEN { if sub { a[i] -= b[i]; } else { a[i] += b[i]; } assert (0 <= a[i]); }
return a; }

fn simplified (reg u16 a_0_id_151, reg u16 a_1_id_152,
reg u16 b_0_id_153, reg u16 b_1_id_154)→ (reg u16, reg u16)

requires {(((((16u) 0) <=u a_0_id_151) && (a_0_id_151 <u ((16u) 100))) &&
((((16u) 0) <=u a_1_id_152) && (a_1_id_152 <u ((16u) 100))))}

requires {(((((16u) 0) <=u b_0_id_153) && (b_0_id_153 <=u a_0_id_151)) &&
((((16u) 0) <=u b_1_id_154) && (b_1_id_154 <=u a_1_id_152)))}

ensures {(((0 <= u16i(a_0_id_155)) && (u16i(a_0_id_155) <= 200)) &&
((0 <= u16i(a_1_id_156)) && (u16i(a_1_id_156) <= 200)))}

{reg u16 a_0_id_155; reg u16 a_1_id_156;
(_, _, _, _, _,a_0_id_155) = #ADD_16(a_0_id_151, b_0_id_153);
assert (((16u) 0) <=u a_0_id_155);
(_, _, _, _, _,a_1_id_156) = #ADD_16(a_1_id_152, b_1_id_154);
assert (((16u) 0) <=u a_1_id_156);
return (a_0_id_155, a_1_id_156); }

Figure 3: Example of annotated source (top) and simplified
Jasmin (bottom) programs.

The typical CryptoLine approach to creating a model is semi-

automated, but it is not formally verified. One first creates a .gas file
using a debugging tool, which is essentially a trace of the execution

of assembly instructions where all operands have been resolved to

either registers or constants (including memory addresses). This

sequence is straight-line, and it provides enough information that

permits rewriting the .gas file (almost 1-line-to-1-line) using an

automatic script to obtain the model. This rewriting script manually

is created for each proof, and is part of the proof process.

The above CryptoLine methodology has the advantage of being

source-language-agnostic. However, for our purposes, the source

language is fixed to Jasmin, and Jasmin is supported by a formally

verified compiler. We therefore propose an alternative CryptoLine

model-generation process where we extend the Jasmin compiler,

and its proof, to establish a formal connection between Jasmin

programs and their corresponding CryptoLine models and proofs.

To this end, we created in the Jasmin compiler a new compilation

path that can convert a restricted class of Jasmin programs—which

may include high-level control-flow, such as unrollable for loops,

integer variables, arrays of registers and stack positions, etc.—into

a lower level format that can be pretty-printed as a CryptoLine

program. In what follows, we refer to the Jasmin program we want

to prove correct as source and to the transformed program that

is pretty-printed to CryptoLine as simplified. Figure 3 shows a

simple example of the source and simplified Jasmin programs. The

source program uses arrays and for loops. The resulting target

simplified program is very close to a CryptoLine program, in that

all high-level features were removed: the program is straight-line,

it uses no arrays, it is static single-assignment. One goal of our

approach is to minimize human intervention in constructing the

CryptoLine model and proof. We therefore fix two default models

of Jasmin programs (for computations over signed and unsigned

integers) and require user intervention only when it is necessary to
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locally change the modeling of specific instructions via translation

directives inserted at the source level. The details are given in

Section 6. Furthermore, as we discuss next, the annotations required

for the proof can be added directly to the source Jasmin program.

Annotating Jasmin programs. We extended the Jasmin compiler

with support for an extensible annotation language that supports

preconditions, post-conditions, as well as assertions that refer to

the program state during evaluation. Figure 3 shows also examples

of these annotations in the source program, and how the compiler

translates them into the simplified program. Note, in particular

the use of high-level big operators such as all to have a compact

syntax for the predicates over the program state, and how these

are removed in the annotations of the simplified program. In the

following sections we will give the formal details about why this

means that we can perform a proof over a simplified program, and

still have the proof apply to the Jasmin source we are interested in.

Here we just give the general intuition. In short, the compiler proof

has been enriched to cover an extended version of the semantics

that is annotation aware: the value of all assertions are registered by
the semantics in a trace during program evaluation. Moreover, this

proof of correctness provides a stronger semantic equivalence rela-
tion between source and simplified programs that allows reasoning

about correctness in either of the programs interchangeably.

EasyCrypt semantics of a CryptoLine proof. Using the above
extensions to the Jasmin compiler, we can already construct Cryp-

toLine proofs of Jasmin programs. However, our goal is to be able to

use such results in larger proof developments. For example, in this

paper, while we use CryptoLine to prove correctness of leaf func-

tions that carry out X25519 multi-precision arithmetic, we use these

results in a larger proof of correctness for the full X25519 imple-

mentation, which in turn is integrated into the proof of correctness

of the X-Wing hybrid KEM construction in Jasmin.

Our final contribution is a new extraction of annotated Jasmin

programs to EasyCrypt that exports the semantics of a CryptoLine

proof in a format that can be composed with other proofs. Specif-

ically, we formalize the meaning of a CryptoLine proof in terms

of the Jasmin semantics, and create in EasyCrypt an exact descrip-

tion of what CryptoLine has proved in terms of these semantics.

This description leaves as proof goals to be discharged interactively

in EasyCrypt any unproved assumptions made in the CryptoLine

proofs, thereby enabling a flexible splitting of proof effort between

the two tools. For the X-Wing example, the proof goals that arise in

EasyCrypt to complete the CryptoLine proofs are the justification

of a common technique in CryptoLine: asserting under bit-string

semantics that a bit is 0, and then assuming an algebraic predicate

that is implied by this fact over the integers. Discharging these goals

in EasyCrypt is simple, and can be seen as machine-checking what

the human user was already able to check by direct inspection. The

examples we present at the end of the paper illustrate additional

ways in which we can modularize a proof to better take advantage

of the strengths of interactive and automatic proof techniques.

3 Annotated Jasmin Programs
We have extended the Jasmin syntax and semantics to allow for

two types of annotations. Function declarations can be annotated

with pre- and post-conditions using the keywords requires and
ensures, and 𝑎𝑛𝑛𝑜𝑡 statements can be added anywhere in the code.

All annot statements, 𝑎𝑛𝑛𝑜𝑡 (𝑘, 𝑒), have an associated kind assert or
assume and a boolean expression. For simplicity, we write assert 𝑒
for 𝑎𝑛𝑛𝑜𝑡 (assert, 𝑒) (resp. for assume). We have also extended the

syntax of Jasmin expressions with a generic (high order) fold oper-

ator over integers, which allows to easily encode big operators like

all and sum, and we also allow the user to extend the language with

abstract type and abstract operators. These operators can only be

used in annotations, since they have no semantics and the compiler

does not know how to compile them to assembly.

Semantics of an annotated program. To account for annotations,
the semantics of Jasmin programs have been enriched in the Coq

development. The evaluation of a Jasmin program defines, not only

a relation between an initial state and a final state, but also the

construction of a trace 𝑡 keeping track of the annotations evaluated

during the program execution. The trace is simply a list of pairs

kind/predicate value. Formally, an 𝑎𝑛𝑛𝑜𝑡 statement leaves the state

of the program unchanged, but it updates the trace with the kind

and Boolean value of the associated expression in the current state.

J𝑒K(𝑠) = b

𝑎𝑛𝑛𝑜𝑡 (𝑘, 𝑒), (𝑠, 𝑡) ⇓ (𝑠, 𝑡 ++ [(𝑘, 𝑏)])

The semantics of a function call are also modified as shown in

Figure 4. They add to the trace the kinds and values of the pre- and

post-condition in two steps: the caller asserts the pre-condition

before entering the callee, and assumes the post-condition upon

return. The callee assumes the precondition upon entry, and asserts

the post-condition before returning.

Finally, in what follows we will restrict our attention to safe
Jasmin programs, which we define as follows.

Definition 1 (Safe program). We say a Jasmin program 𝑐 is
safe when ∀𝑠 .∃𝑠′, 𝑡 .(𝑐, (𝑠, 𝜖)) ⇓∗ (𝑠′, 𝑡).

4 Certified compilation with traces
Our interaction with CryptoLine requires a simplified Jasmin pro-

gram, where all arrays, if statements and for loops have been re-

moved in order to obtain a straight-line, static single-assignment

program that can be pretty-printed to the CryptoLine language in

a trivial way. To do so we have created inside the Jasmin compiler

a new compilation pipeline that is specific to CryptoLine and that

removes all high-level features from an input Jasmin program. We

will call this the CryptoLine version of the Jasmin compiler and,

when clear from the context, the program simplification performed

by the Jasmin compiler. This pass rejects Jasmin programs that

include features not supported by our CryptoLine backend, such as

direct memory access and array accesses that cannot be resolved at

compile time. The simplification unrolls loops, replaces arrays with

variables, and propagates constants (including those stored in global

tables). Furthermore big operators in annotations are removed by

partial evaluation. The final program is a valid annotated Jasmin

program in static single-assignment form. The proof of the compiler

(CryptoLine version) has been extended to take into account traces.
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J𝑝 (𝑓 )preK(va ) = b 𝑝 (𝑓 )𝑐 , (∅[𝑝 (𝑓 )param := va ], [ (assume, 𝑏 ) ] ) ⇓∗ (𝑠′, 𝑡 ) J𝑝 (𝑓 )resK(𝑠′ ) = vr J𝑝 (𝑓 )postK(va, vr ) = b’

𝑓 , va ⇓𝑝call vr, 𝑡 ++ [ (assert, 𝑏
′ ) ]

𝑎, 𝑠 ⇓ va J𝑝 (𝑓 )preK(va ) = b 𝑓 , va, ⇓𝑝call vr, 𝑡 J𝑝 (𝑓 )postK(va, vr ) = b’ 𝑡 ′′ = 𝑡 ++ [ (assert, 𝑏 ) ] ++ 𝑡 ′ ++ [ (assume, 𝑏′ ) ]
(𝑟 = 𝑓 (𝑎), (𝑠, 𝑡 ) ) ⇓ ( (𝑠 [𝑟 := vr ] ), 𝑡 ′′

Figure 4: Semantics of call in Jasmin with annotations

Theorem 1 (Preserving Trace). The simplification performed
by the Jasmin compiler preserves traces:

∀𝜎, 𝑠, 𝑡 . (𝑐, 𝜎) ⇓∗ (𝑠, 𝑡) =⇒ ∃𝑠′ . (T (𝑐), 𝜎) ⇓∗ (𝑠′, 𝑡)
Where T (𝑐) denotes the compilation of a program 𝑐 .

A well known fact is that, because the semantics of Jasmin is

deterministic, the above theorem implies the converse for safe

programs.

Theorem 2. The simplification performed by the Jasmin compiler
reflects traces of safe programs.

∀𝜎, 𝑠, 𝑡 . (T (𝑐), 𝜎) ⇓∗ (𝑠, 𝑡) =⇒ ∃𝑠′ . (𝑐, 𝜎) ⇓∗ (𝑠′, 𝑡)
Trace validity. In our theoretical framework we will also need the

notions of trace and sub-trace validity.

Definition 2 (Valid Trace). A trace 𝑡 is valid, written 𝑣𝑎𝑙𝑖𝑑 (𝑡),
when all the Boolean values in the trace are true (written ⊤).

A CryptoLine proof does not guarantee full trace validity, but

instead a restricted notion of sub-trace validity that we formalize

in Section 6. Intuitively, CryptoLine guarantees that the assert

subtrace is valid in the restricted set of executions where the assume

trace holds.

Definition 3 (Valid Sub-trace). We say the sub-trace of trace 𝑡
of kind k is valid, written 𝑣𝑎𝑙𝑖𝑑 (𝑡)k, when 𝑣𝑎𝑙𝑖𝑑 (𝑡)k is a derivation of
the following rules:

𝑣𝑎𝑙𝑖𝑑 (𝜖)k

𝑣𝑎𝑙𝑖𝑑 (𝑡)k
𝑣𝑎𝑙𝑖𝑑 ((_,⊤) :: 𝑡)k

𝑘 ′ ≠ k

𝑣𝑎𝑙𝑖𝑑 ((𝑘 ′,⊥) :: _)k
The intuition of this notion of validity is that, when checking for

kind k, we are only interested in validity for executions in which

annotations of the other kinds evaluate to true. When this is not
the case, then validity trivially holds. In fact, this derivation is

essentially encoding an implication: 𝑣𝑎𝑙𝑖𝑑 (𝑡)k holds if either some

annotation of kind 𝑘 ′ ≠ k is false, or all annotations of kind k are
true. An important property of sub-trace validity is completeness,

which we prove in EasyCrypt for the concrete case of assume/assert.

Theorem 3 (Complete validity splitting).

𝑣𝑎𝑙𝑖𝑑 (𝑡)assert ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑡)assume =⇒ 𝑣𝑎𝑙𝑖𝑑 (𝑡)

5 Methodology
So far we have discussed the meaning of an annotated program, so

now we are ready to discuss our methodology to prove properties

of Jasmin programs by relying on annotations.

To this end, we introduce two notions of correctness for Jasmin

programs; one that permits establishing a weaker notion of partial

correctness, and another one that permits reasoning about our

target notion of total correctness.

Definition 4 (Well annotated program for a kind). For
given program 𝑐 , and arbitrary predicates 𝑃 and𝑄 , we say a program
is well annotated for kind k when:

{𝑃}𝑐{𝑄}k ≜
∀𝑠, 𝑠′, 𝑡 .𝑃 (𝑠) =⇒ (𝑐; assert 𝑄, (𝑠, 𝜖)) ⇓∗ (𝑠′, 𝑡) =⇒ 𝑣𝑎𝑙𝑖𝑑 (𝑡)k

We say a program is well annotated when the implication holds for
𝑣𝑎𝑙𝑖𝑑 (𝑡), i.e., execution always generates a full valid trace.

Intuitively, for the particular case of programs annotated only

with assume and assert stements, a partially well annotated program

is guaranteed to satisfy all assertions (including the post-condition)

but only in executions where the assume annotations turn out to

be true. Indeed, such a result says nothing about the executions in

which the pre-condition and internal assume statements turn out

to evaluate to false.

The stronger notion of well-annotated programs requires all

annotations to be valid whenever the program starts from a state

in which the precondition holds. Clearly, for safe programs, a well-

annotated program is also totally correct in the standard sense:

Definition 5 (Total correctness).

[𝑃]𝑐 [𝑄] ≜ ∀𝑠 .𝑃 (𝑠) =⇒ ∃𝑠′, 𝑡 .(𝑐, (𝑠, 𝜖)) ⇓∗ (𝑠′, 𝑡) ∧𝑄 (𝑠′)

Theorem 4. A well annotated safe program is totally correct.

The proof of this theorem is trivial, since reaching a final state

is guaranteed by safety, and a well annotated program is known to

satisfy the post-condition due to the assertion over the final state.

Methodology. Our methodology relies on the fact that we decom-

pose a proof of functional correctness by 1) proving that a simplified

version of the program is partially well annotated for asserts using

CryptoLine (this first part is done fully automatically); and 2) prov-

ing that the source program is partially well annotated for assumes

using EasyCrypt. This latter part is not always necessary, but it

allows us to flexibly split the proof effort between CryptoLine and

EasyCrypt, which is useful in several cases as we will illustrate with

our examples. Formally, the soundness of our approach is captured

by the following theorem.

Theorem 5 (Soundness). Let 𝑐 be an annotated Jasmin program
and let T (𝑐) denote its simplified counterpart. Then following condi-
tions imply that [𝑃]𝑐 [𝑄] holds:

(1) 𝑐 is safe
(2) {T (𝑃))} T (𝑐) {T (𝑄))}assert
(3) {𝑃}𝑐{𝑄}assume

Proof. By Theorem 2 we know that (2) implies {𝑃} 𝑐 {𝑄}assert.
This, combined with (3) allows us to apply Theorem 3 and derive

that the program is well annotated. Finally, we complete the proof

by applying Theorem 4. □



CCS ’25, October 13–17, 2025, Taipei, Taiwan José Bacelar Almeida et al.

6 Proving Partial Correctness using CryptoLine
We now explain how we use CryptoLine as a decision procedure

for the partial correctness of simplified Jasmin programs.

CryptoLine and its semantics. CryptoLine programs are straight-

line and static single-assignment, just like simplified Jasmin pro-

grams (see Appendix A for more on Cryptoline). CryptoLine vari-

ables are also declared as words of fixed size, but they have a type

annotation that indicates how they should be interpreted as an

integer: they are either signed or unsigned. The semantics of Cryp-

toLine instructions is defined by interpreting the values as integers,

performing a computation over the integers, and injecting the result

back into the type. The CryptoLine notion of safety requires proving

that all such injection operations performed by the semantics are

overflow-free (this depends on signedness). Otherwise the seman-

tics raises an error. Like simplified Jasmin programs, CryptoLine

programs are annotated with pre-conditions and post-conditions,

and they can have intermediate assert and assume statements. The

semantics of CryptoLine evaluates to an error whenever an assert

statement evaluates to false. For assume statements there is no

error: the execution of the program is blocked. The following no-

tion of correctness, captures the meaning of successful CryptoLine

proof [10, 14].

Definition 6 (CryptoLine correctness). We say a program 𝑐

is correct wrt CryptoLine for predicates 𝑃 and 𝑄 if:

{𝑃}𝑐{𝑄}CL ≜ ∀𝑠, 𝑠′ . 𝑃 (𝑠) =⇒ (𝑐, 𝑠) ⇓∗CL 𝑠′ =⇒ 𝑠′ ≠ error ∧𝑄 (𝑠′)

From simplified Jasmin to CryptoLine. We construct a pretty-

printing function P from an annotated (simplified and safe) Jasmin

program 𝑐 := [𝑐1, . . . , 𝑐𝑛, return 𝑣] that, by construction, has the

following properties.

• State equivalence: there is a one-to-one correspondence between

the variables in the Jasmin program and the subset of variables

in the pretty-printed program that can occur in pretty-printed

CryptoLine predicates. In what follows, when we use the same

state to evaluate 𝑐 and P(𝑐) we mean that these variables have

the same value as bitstrings in both programs.

• Predicate equivalence: if 𝑃 is a predicate and 𝑠 is a state, then

𝑃 (𝑠) ≡ (P(𝑃)) (𝑠).
• Semantic equivalence for instructions: if 𝑐𝑖 denotes a Jasmin

statement that executes a Jasmin processor instruction, then

(P(𝑐𝑖 ), 𝑠) ⇓CL 𝑠′ =⇒ 𝑠′ ≠ error =⇒ (𝑐𝑖 , 𝑠) ⇓ 𝑠′
• We note that both simplified Jasmin programs and CryptoLine

programs are static single-assignment, which means that each

statement updates the state by creating new variables and as-

signing values to them. This allows for straightforward solutions

when handling function calls. If 𝑐𝑖 a Jasmin statement that calls

function𝑔, thenP(𝑐𝑖 ) := assert(P(𝑝𝑟𝑒 (𝑔))); assume(P(𝑝𝑜𝑠𝑡 (𝑔))).
This last rule is very important because it allows to not always

inline functions during the translation to CryptoLine, and allows

for a modular proof where each function is proved only once. The

following result allows us to use CryptoLine as a decision oracle

for point (2) in Theorem 5.

Theorem 6. Let 𝑐 be a simplified safe Jasmin program and 𝑃 𝑄

be arbitrary predicates. Then, if P guarantees the properties stated

fn _ec2(reg u64 g j)→ (reg u64, reg u64)
requires #[prover=smt] { g == j}
ensures #[prover=smt] { result.0 == g + j}
{
#[kind=Assert, prover=smt] assert ( g == j);
g = g + j; return (g,g); }

fn _ec2 (reg u64 g_id_130, reg u64 j_id_131)→ (reg u64, reg u64)
requires #[prover=smt] {(g_id_130 ==64u j_id_131)}
ensures #[prover=smt] {(g_id_135 ==64u (g_id_130 +64u j_id_131))}
{
reg u64 g_id_135;
#[kind="Assert", prover="smt"]
assert (g_id_130 ==64u j_id_131);
(_ , _ , _ , _ , _ ,g_id_135) = #ADD_64(g_id_130, j_id_131);
return (g_id_135, g_id_135); }

Figure 5: Annotated Jasmin (top) and simplification (bottom).

above, we have:5

{P(𝑃)}P(𝑐){P(𝑄)}CL =⇒ {𝑃}𝑐{𝑄}assert

Proof. We note that Jasmin programs do not contain recursive

functions. Thus we can do the proof by induction using a lexico-

graphical order on the call graph of 𝑐 and the size of 𝑐 . If 𝑐 is empty

it is trivial. If 𝑐 is 𝑖; 𝑐′ where 𝑖 is a processor instruction or an assert
the result follows trivially by induction. If 𝑐 is an assume(𝑒); 𝑐′,
and if 𝑒 evaluates to ⊤ the result follows by induction; if 𝑒 eval-

uated to ⊥ then the trace exists (because 𝑐 is safe) and is valid

(assert) because it includes (assume,⊥). If 𝑐 is a function call fol-

lowed by 𝑐′, P(𝑐) does not really evaluate the function: instead it

simply introduces new variables and assumes the post condition.

We now must refer to Figure 4 and observe that the callee Jasmin

function assumes the pre-condition (which we already establish

to be true), so validity is preserved. Also, since we know that the

subroutine is well-annotated for asserts and we are in a state where

the pre-condition holds, the trace produced by the subroutine can

be appended to the previous trace with the guarantee that validity

holds overall. Finally, we use the fact that the subroutine asserts the

post-condition on the Jasmin side to derive that the state resulting

from the call when the subroutine returns is covered by the proof

of CryptoLine correctness of 𝑐 . This means that this Jasmin state

can be used continue the proof by evaluating the two programs in

lockstep. □

Pretty-Printing Instructions. Wewill explain the pretty-printing

using simple examples. Consider the example in Figure 5.

The pretty printing of the addition instruction generates the

following string:

adds NONE_____146@uint1 g_135@uint64 g_130@uint64 j_131@uint64;

Note the introduction of the temporary variable to handle the

carry. This is the default translation; alternatively, it is possible

to annotate the source code with a modifier that pretty-prints the

translation as:

5
Note that in the context of Theorem 5 we will be instantiating this theorem with

(𝑐, 𝑃,𝑄 ) := (T (𝑐′ ), T(𝑃 ′ ), T(𝑄 ′ ) ) for some Jasmin source (𝑐′, 𝑃 ′,𝑄 ′ ) .
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add g_135@uint64 g_130@uint64 j_131@uint64;

However, in this case CryptoLine will reject the program as

unsafe in case the carry cannot be proved to be zero. Nevertheless,

note that in both cases the final value of the output variable is

identical to the value it will take in the Jasmin semantics.

We follow the same strategy to model all Jasmin instructions

of interest. Furthermore, we do so for two pretty-printing modes:

unsigned (shown in the example above) and signed. The difference

between the two is whether translated Jasmin variables (for which

the notion of signedness is not defined) are translated to signed or

unsigned CryptoLine variables.
6
For many operations, the pretty-

printing is actually the same independently of signedness. However,

for some instructions, such as arithmetic shifts, one needs to take

care to ensure that the final value computed by the CryptoLine

translation (assuming the program is declared safe) matches the

one computed by Jasmin. As an example, the translation of assign-

ing a constant 65535 to a 16-bit variable 𝑎 in the signed case is

mov a_144@sint16 (-1)@sint16.

Pretty-Printing Predicates. The pretty-printing of Jasmin predi-

cates to CryptoLine has several interesting aspects. The first aspect

is how we handle the distinction between CryptoLine algebraic and

range goals. An attribute can be associated with each annotation to

tag it as being intended for pretty-printing as an algebraic or range

predicate, which allows P to perform a few checks. These include

confirming that only an appropriate subset of Jasmin expressions

can occur in each one of them (expressions computed over the inte-

gers for algebraic predicates vs expressions computed over Jasmin

words/bit vectors for range predicates). For algebraic predicates we

enrich the language of expressions using a few abstract operators

that permit capturing the CryptoLine semantics of the annotations.

We describe some examples:

• u16i, u32i, etc. are abstract predicates mapping Jasmin words to

integers. They represent the integer interpretation of a Jasmin

word.

• eqmod_int and eqmod are abstract predicates that represent

congruences over the integers and polynomials, respectively.

• mon, mon0 are constructors for monomials, which one can use

to construct polynomials.

We note that the Jasmin semantics says nothing about the meaning

of these abstract operators, but the pretty-printing to CryptoLine

actually assigns to them a semantics. For example u16i has the
semantics of interpreting a Jasmin variable as a signed integer

when using the signed mode of pretty-printing, and as an unsigned

integer otherwise. Similarly, eqmod_int(𝑎, 𝑏, 𝑐) is printed to the

eqmod(𝑎, 𝑏, 𝑐) CryptoLine operator, which over the integers has

the semantics of 𝑎 − 𝑏 = 0 (mod 𝑐).

Implications. We now shortly explain how the results in this sec-

tion relate to the theoretical framework introduced in the previous

sections. Consider some Jasmin function that is pretty-printed to

CryptoLine and accepted as correct (and similarly for all functions

in the call tree). Then we know that the program is well annotated

for assertions, but compared to the previous section we have the

6
We could have generalized this part of the translation and considered keeping signed-

ness information for each Jasmin variable, but this is not needed for the examples we

are interested in here.

op u16i = W16.to_sint. (∗ for proofs using signed interpretation ∗)
op u16i = W16.to_uint. (∗ for proofs using unsigned interpretation ∗)
op eqmod_int(a b m : int) : bool = (a−b) %% m = 0.

clone export Poly.Poly as IntPoly with type coeff = int.
abbrev (^) = PolyComRing.exp.

op mon(ind deg c : int) = c ∗∗ X ^ deg.
op mon0(c : int) = c ∗∗ X ^ 0.
op eqmod(a b : poly, c : poly list) =
∃ (ws : poly list), size ws = size c ∧ foldr (fun (xmi : poly∗poly) (acc : poly)⇒

xmi.`1 ∗ xmi.`2 + acc) poly0 (zip ws c) = (a − b).

Figure 6: EasyCrypt semantics of CryptoLine predicates.
proc _ec2 (g:W64.t, j:W64.t) : ((W64.t ∗ trace) = {
old_g← g; old_j← j; trace__ec2← [];
(∗ The precondition is assumed ∗)
trace__ec2← (trace__ec2 ++ [(Assume, (g = j))]);
(∗ The assertion is asserted ∗)
trace__ec2← (trace__ec2 ++ [(Assert, (g = j))]);
g← (g + j);
(∗ The postcondition is asserted ∗)
trace__ec2← (trace__ec2 ++ [(Assert, (g = (old_g + old_j)))]);
return (g), trace__ec2);

}

Figure 7: EasyCrypt extraction with traces.

novelty that these assertions now have the full semantics assigned

by P and CryptoLine to the abstract operators that occur in the

Jasmin code. We can therefore apply Theorem 5 and conclude that

the semantics of the above result is reflected back to the Jasmin

source and, furthermore, that to transform the CryptoLine proof

into a total correctness result, it remains only to prove that the

program is well annotated for assumes. (If no assume statements

exist, then there is nothing left to prove.)

In the following section we explain how we recover the full

semantics of the CryptoLine proof in EasyCrypt and, if necessary,

discharge the side-conditions concerning assume statements. For

this we rely on a simple EasyCrypt library that brings to EasyCrypt

the concrete semantics of the abstract operators fixed by P and

CryptoLine. The fact that these semantics are correct is part of

our TCB. However, this assumption is easy to validate by human

inspection, since the library is very small. For example, Figure 6

shows the relevant parts for the operators above.

7 Trace Semantics in EasyCrypt
We have implemented a dedicated extraction feature in the Jasmin

compiler tool chain, which takes as input an annotated Jasmin pro-

gram and generates an EasyCrypt file that captures the semantics

of what was proved and left as an unproved assumption by Cryp-

toLine. The extraction should be used when all functions in the

call tree of the entry-point annotated Jasmin function have been

approved by CryptoLine. Specifically, all the call tree is extracted

to EasyCrypt, and it explicitly computes the trace of annotations as

defined in the Jasmin semantics. Figure 7 shows the result of extract-

ing the Jasmin function from Figure 5. The case of function calls is

handled also as expected: all functions add their pre-condition as an

assumption and assert the pre-conditions of subroutines. Similarly,

each function asserts its own post-condition before returning, and

assumes the post-condition of subroutines after they return. Note

that the EasyCrypt extraction maintains the calls to subroutines, so

the traces computed in EasyCrypt exactly match those described

in Figure 4. The statement verified by CryptoLine translated to

EasyCrypt as follows.
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lemma _ec2_assert _g _j :
hoare [M._ec2 : (((_j = j) ∧ (_g = g)) ∧ (_g = _j))⇛ (validk Assert (trace res))].

These lemmas are admitted with a comment indicating that they

should be proved using CryptoLine. The statement that remains to

be verified, corresponding to the assumed conditions in CryptoLine

is stated as follows:
7

lemma _ec2_assume_ _g _j :
hoare [M._ec2 : ((_j = j) ∧ (_g = g))⇛ ((_g = _j)⇒ (validk Assume (trace res)))].

This proof needs to be completed in EasyCrypt, and it is typically

boilerplate, unless the assumes statements in the proof indeed re-

quire deep interactive reasoning in EasyCrypt (e.g. as we will see

in the next section this can happen because a function was sim-

ply assumed to be correct in the CryptoLine proof introducing

an assumption of the post-condition prior to returning). We then

generate two lemmas, with synthethised EasyCrypt proofs, that

permit deriving the total correctness result stated in Theorem 5. To

be able to show that the function contract is holding, we need an

additional lemma stating that the postcondition is in the trace :

lemma _ec2_valid_post _g _j : hoare [M._ec2 : ((_j = j) ∧ (_g = g))⇛
((valid (trace res))⇒ (res.`1.`1 = (_g + _j)))].

lemma _ec2_spec _g _j : hoare [M._ec2 :
(((_j = j) ∧ (_g = g)) ∧ (_g = _j))⇛ (res.`1.`1 = (_g + _j))].

The first lemma establishes that a valid trace implies the post-

condition, and the second lemma combines all previous proofs to

get the total correctness hoare triple.

8 Examples
In this section we illustrate the formal verification methodology for

Jasmin programs that combines the traditional EasyCrypt-based

approach with the Jazzline approach we introduce in this paper.

8.1 X25519 and X-Wing
Figure 8 shows a snippet of the EasyCrypt specification of X-Wing:

the procedure that expands the X-Wing secret key. This specifica-

tion, makes calls to the EasyCrypt specifications of three lower-level

cryptographic primitives: SHAKE-256, X25519 and ML-KEM. The

figure also shows the specification of the X25519 curve operations.

We prove equivalence of the X-Wing implementation in Jasmin

to this specification. The proof of equivalence relies directly on

the relational Hoare logic provided by EasyCrypt and it is done in

multiple hops, i.e., we prove equivalence across a sequence of im-

plementations and use transitivity to derive the result we need: this

expresses an equivalence between an extraction of the full X-Wing

code to EasyCrypt (a single EasyCrypt module) and the X-Wing

EasyCrypt specification. The first transformation proves equiva-

lence of the extracted implementation to another one in which all

the code corresponding to SHA-3, X25519 and ML-KEM is removed

and is replaced to calls to the EasyCrypt modules over which cor-

rectness of SHA-3, X25519 and ML-KEM proofs has already been

carried out. This proof is straightforward, as EasyCrypt can detect

that the code used by X-Wing is syntactically identical to the ones

over which the proofs were carried out. We carry out another hop

7
Observe the encoding of the precondition of the function as an implication in the

post-condition of the Hoare triple. This clearly equivalent formulation allows us to

reduce the boiler-plate EasyCrypt code associated with function calls in CryptoLine

proofs.

to lower the level of abstraction of the X25519 specification and

replace the functional operators that carry out the X-Wing opera-

tions with calls to procedures that implement the same operations

imperatively—our specification of X25519 has both variants for con-

venience, and they are proved to be equivalent to enable using them

interchangeably. Once these steps are performed, the top-level code

of the X-Wing implementation is making calls to procedures in the

exact same points as the X-Wing specification. This means that the

proof of correctness can be performed by simply using EasyCrypt’s

relational hoare logic to argue that equivalence follows from the fact

that the called procedures on both sides are themselves equivalent.

For the ML-KEM and SHA-3 implementations these equivalences

follow from the proofs carried out in [1, 3] and [2], respectively:

our proof just applies the EasyCrypt correctness lemmas that were

established in these pre-existing developments.
8
The approach in-

troduced in this paper was instrumental in obtaining proofs for the

X25519 implementations with minimal effort, as we describe next.

Proving X25519 in EasyCrypt. The correctness proof for curve
X25519 was done simultaneously for two implementations: a refer-

ence implementation, and an optimized implementation using the

mulx, adox and adcx family of x86-64 operation, that enable the

interleaving of add-with-carry operations and multiplications. This

allows us to showcase the advantages of using EasyCrypt for the

high-level parts of such proofs: we are able essentially reuse the

proofs for all the architecture-agnostic parts of the implementation,

i.e., the non-leaf functions that are orchestrating the finite-field

operations in the correct sequence to compute the elliptic curve

operations.

Technically, the proofs of both implementations proceed roughly

as we described for the X-Wing proof. We construct an EasyCrypt

imperative specification of the functions that compute the curve

operations and prove this equivalent to the functional counterpart.

This now moves our functional correctness target to a specification

of X25519 that has a procedure call-tree that is very close to that

adopted by the Jasmin implementations. Indeed, all functions except

the leaves are essentially managing calls to lower-level functions,

and this structure is the same for both the reference and optimized

Jasmin implementations.

The leaf functions perform the same computation in both im-

plementations and therefore satisfy the same contract. However,

the way in which the computation is carried out, and therefore the

proofs, diverge. At this point, we identify those proofs that are al-

gebraically rich, and for which closely matching CryptoLine proofs

already exists. The exceptions are simple functions such as those

that fix some bits in the representations of values and/or perform

type conversions to/from byte arrays. These latter functions we

prove directly in EasyCrypt, and the proofs are straightforward.

This highlights another advantage of using EasyCrypt: we have

access in the same tool and simultaneously to a bit-level semantics

and to a high-level integer-based semantics of word operations, so

we can choose the most convenient one to carry out a proof.

8
Some effort was required to update these pre-existing proofs to the more recent

version of EasyCrypt and streamline the modular composition of proofs, but these

changes were boilerplate refactorings.
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op spec_decode_scalar_25519 (k:W256.t) =
let k = k[0 ← false] in
let k = k[1 ← false] in
let k = k[2 ← false] in
let k = k[255← false] in
let k = k[254← true ] in k.

op spec_decode_u_coordinate (u:W256.t) = let u = u[255← false] in u.

op spec_add_and_double (qx : zp) (nqs : (zp ∗ zp) ∗ (zp ∗ zp)) =
let x_1 = qx in
let (x_2, z_2) = nqs.`1 in
let (x_3, z_3) = nqs.`2 in
let a = x_2 + z_2 in
let aa = a ∗ a in
let b = x_2 + (− z_2) in
let bb = b∗b in
let e = aa + (− bb) in
let c = x_3 + z_3 in
let d = x_3 + (− z_3) in
let da = d ∗ a in
let cb = c ∗ b in
let x_3 = (da + cb)∗(da + cb) in
let z_3 = x_1 ∗ ((da + (− cb))∗(da + (− cb))) in
let x_2 = aa ∗ bb in
let z_2 = e ∗ (aa + (inzp 121665 ∗ e)) in ((x_2,z_2), (x_3,z_3)).

op spec_montgomery_ladder(init : zp, k : W256.t) =
let nqs0 = ((Zp.one,Zp.zero),(init,Zp.one)) in
foldl (fun (nqs : (zp ∗ zp) ∗ (zp ∗ zp)) ctr⇒

if spec_ith_bit k ctr
then spec_swap_tuple (spec_add_and_double init (spec_swap_tuple(nqs)))
else spec_add_and_double init nqs) nqs0 (rev (iota_ 0 255)).

op spec_encode_point (q: zp ∗ zp) : W256.t =
let q = q.`1 ∗ (ZModpRing.exp q.`2 (p − 2)) in
W256.of_int (asint q).

op spec_scalarmult_internal (k: zp) (u: W256.t) : W256.t =
let r = spec_montgomery_ladder k u in
spec_encode_point (r.`1).

op spec_scalarmult (k: W256.t) (u: W256.t) : W256.t =
let k = spec_decode_scalar_25519 k in
let u = spec_decode_u_coordinate u in
spec_scalarmult_internal (inzp (to_uint u)) k.

op spec_scalarmult_base (k:W256.t) : W256.t =
spec_scalarmult (k) (W256.of_int(9%Int)).

proc expandDecapsulationKey(sk : secretkey) : expandedSecretKey = {
var expanded, coins1, coins2, coins3, pk_M, sk_M, pk_X_256, pk_X, sk_X, k;

expanded← SHAKE256_32_96 sk;

coins1← Array32.init (fun (i: int)⇒ expanded[0 + i]);
coins2← Array32.init (fun (i: int)⇒ expanded[32 + i]);
coins3← Array32.init (fun (i: int)⇒ expanded[64 + i]);

sk_X← coins3;
pk_X_256← scalarmult_base (W32u8.pack32 (to_list sk_X));
pk_X← Array32.of_list W8.zero (W32u8.to_list pk_X_256);

(pk_M, sk_M)←MLKEM.kg_derand(coins1, coins2);
k← (sk_M, sk_X, pk_M, pk_X);
return k;

}

Figure 8: Snippets of the X-Wing and X25519 EasyCrypt specifications.

The remaining leaf functions comprise addition, subtraction,

multiplication, squaring and reduction modulo 2
255

-19. For all oper-

ations, the inputs and outputs are represented as 4x64-bit registers,

and the contracts are of the general form shown below for the

multiplication operation:

hoare [M.__mul4_rsr :
inzpRep4 fs = _f ∧ inzpRep4 g = _g⇛ inzpRep4 res = _f ∗ _g ].

Here, inzpRep4 is an EasyCrypt operator that takes an array of four

64-bit words, reconstructs the represented multi-precision integer

and injects it into the finite field F
2
255-19

. The contract states that

the result represents an integer that is congruent to the product of

the (integers represented by the) input values, modulo 2
255

-19.

Using Jazzline to conclude the proof. We conclude the proof by

creating an annotated version of each Jasmin function that we want

to prove. We show snippets of the multiplication code in Figure 9.

We can see on the right-hand side the contract expressing that the

function guarantees the desired congruence, expressed here over

the integers. On the left-hand side we can see one of the subroutines

where we use the strategy of proving using range predicates (i.e.,

SMT) that a carry flag is zero, and then assume this same property

in the algebraic side of the proof.

Throughout, we are using the default translation of instructions

to CryptoLine and unsigned interpretation for all variables. Crypto-

Line accepts the proof, which means that we can extract the result

to EasyCrypt and obtain a statement of this result as described in

Section 7. The top-level EasyCrypt theorem, which we are able to

derive with essentially no effort is shown in Figure 9 (right).

We note, however that this result applies to an EasyCrypt mod-

ule that is instrumented with all the operational code required to

capture the semantics of asserts and assumes, whereas we need the

result to hold over the EasyCrypt extraction of the actual imple-

mentation that we are proving correct. However, this final result is

trivial to obtain in EasyCrypt by proving that the two versions of

the EasyCrypt code (the non-instrumented and the instrumented

one) are, in fact, computing the same result. Again, EasyCrypt is

able to easily determine that the parts of the code that carry out

the computation are syntactically identical.
9

Lastly, for some of the low-level procedures, such as the modular

reduction leaf function, we illustrate another possibility for compos-

able reasoning with CryptoLine proofs. The proof requires a case

analysis, considering for each case that input is in a particular range,

such as 0 and 2
255 − 19. Hence, we proved the function’s correct-

ness multiple times using CryptoLine, with different assert/assume

annotations, capturing conditions that follow from each specific

case, and that enable an automatic proof. We can then compose

these proofs in EasyCrypt and obtain a result that covers the entire

range of possible inputs.

8.2 The ML-KEM NTT
Cryptographic constructions based on polynomial rings often rely

on the number theoretic transform (NTT) to speed-up multiplica-

tions of ring elements. ML-KEM is no exception. They are con-

structed over the polynomial ring R𝑞 := Z𝑞 [𝑋 ]/(𝑋 256 + 1), where
𝑞 = 3329 is a small prime. Both input and output of NTT can be

written as a sequence of 256 coefficients in Z𝑞 . Indeed, the NTT
is usually specified as an in-place algorithm over such sequences,

9
We will see in the next example, however, that for some proofs relying on CryptoLine,

it is useful to annotate a Jasmin program that is actually not trivially equivalent to the

one for which the proof is intended.
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inline fn __mul4_c1( reg u64[4] h r g, reg u64 f z, reg bool cf of)
→ reg u64[4],reg u64[4],reg bool,reg bool {
reg u64 hi lo;
( hi, lo ) = #MULX ( f, g[0] );
of, h[1] = #ADOX ( h[1], lo, of );
cf, h[2] = #ADCX ( h[2], hi, cf );
( hi, lo ) = #MULX ( f, g[1] );
of, h[2] = #ADOX ( h[2], lo, of );
cf, h[3] = #ADCX ( h[3], hi, cf );
( hi, lo ) = #MULX ( f, g[2] );
of, h[3] = #ADOX ( h[3], lo, of );
cf, r[0] = #ADCX ( r[0], hi, cf );
( r[1], lo ) = #MULX ( f, g[3] );
of, r[0] = #ADOX ( r[0], lo, of);
cf, r[1] = #ADCX ( r[1], z, cf);
of, r[1] = #ADOX ( r[1], z, of);
#[kind=Assert, prover=smt] assert (¬cf);
#[kind=Assume, prover=cas] assert (b2i(cf) == 0);
#[kind=Assert, prover=smt] assert (¬of);
#[kind=Assume, prover=cas] assert (b2i(of) == 0);
return h, r, cf, of;

}

fn __mul4_rsr(stack u64[4] fs, reg u64[4] g)→ reg u64[4]
ensures #[prover=cas] {
eqmod (
\sum (ii ∈ 0:4) (pow(2, 64∗ii)∗u64i(result.0[ii])),
\sum (ii ∈ 0:4) (pow(2, 64∗ii)∗u64i(fs[ii])) ∗

\sum (ii ∈ 0:4) (pow(2, 64∗ii)∗u64i(g[ii])),
single((pow(2,255)) − 19)
) }

{
g0 = #copy(g); z = 0;
f = fs[0];
h, r, cf, of = __mul4_c0( f, g0, z, cf, of);
f = fs[1];
h, r, cf, of = __mul4_c1(h, r, f, g0, z, cf, of);
f = fs[2];
h, r, cf, of = __mul4_c2(h, r, f, g0, z, cf, of);
f = fs[3];
h, r, cf, of = __mul4_c3(h, r, f, g0, z, cf, of);
_38 = 38;
h = __reduce4(h, r, _38, z, cf, of);
return h;

}

lemma __mul4_rsr_spec :
∀ _fs _g,
hoare [M.__mul4_rsr :
(((_g = g) ∧ (_fs = fs)) ∧ true)⇛
(eqmod
(foldr (fun x⇒ (fun (acc: int)⇒ (x + acc))) 0
(map (fun ii⇒ ((pow 2 (64 ∗ ii)) ∗ (u64i res.`1[ii]))) (iota_ 0 4)))
((foldr (fun x⇒ (fun (acc: int)⇒ (x + acc))) 0
(map (fun ii⇒ ((pow 2 (64 ∗ ii)) ∗ (u64i _fs[ii]))) (iota_ 0 4))) ∗
(foldr (fun x⇒ (fun (acc: int)⇒ (x + acc))) 0
(map (fun ii⇒ ((pow 2 (64 ∗ ii)) ∗ (u64i _g[ii]))) (iota_ 0 4))))
(single ((pow 2 255) − 19)))].

Figure 9: Snippet of the Jazzline proof for the X25519mulxmultiplication (left, middle). EasyCrypt theorem (right).

which is the way in which implementations are expected to per-

form the computation. In particular, the FIPS-203 document [13]

specifies the algorithm as given in Figure 10 (left). A quick look at

the right-hand side of Figure 10, which includes the Jasmin refer-

ence implementation of the NTT routine, shows that the high-level

control flow of both routines is very close, and the main difference

between specification and implementations lies in the fact that the

former is manipulating polynomial coefficients, which are field ele-

ments, whereas the implementation is manipulating 16-bit words

that represent the corresponding field elements. In the EasyCrypt

proofs of ML-KEM implementations carried out in [1, 3] this close-

ness is explored to construct a direct equivalence proof between

two programs in EasyCrypt (ML-KEM specification and model of

the Jasmin program) using relational Hoare logic. The non-trivial

part of that proof concerns the lower level functions fqmul and

poly_reduce, which perform multiplication modulo 𝑞 in Montgomery

representation and coefficient-wise Barrett reduction, respectively.

Algebraic proofs of the NTT in CryptoLine. The above equiv-
alence proof does not capture the mathematical semantics of the

computed NTT function: intuitively, it just shows that the two

EasyCrypt algorithms (specification and model of implementation)

compute the same result. CryptoLine proofs of the ML-KEM NTT

are expressed differently: they establish that the output of the NTT
operation can be seen as 128 degree 1 polynomials, as given by the

formula below, also extracted from FIPS-203.

(𝑓 (mod 𝑋 2 − 𝜁 2BitRev7 (0)+1), . . . , 𝑓 (mod 𝑋 2 − 𝜁 2BitRev7 (127)+1))

Here, 𝑓 represents the input polynomial, 𝜁 = 17, and BitRev(𝑖) is
the integer represented by bit-reversing the unsigned 7-bit value

that represents 𝑖 ∈ [0, 127]. This result is, on one hand, semanti-

cally richer and, on the other hand, straightforward to obtain fully

automatically using CryptoLine, under the assumption that the

lower level computations corresponding to the fqmul and poly_reduce

routines mentioned above are correct. However, establishing the

correctness of these lower level routines is not straightforward to

derive automatically, except by brute-forcing the computation using

SAT. This could be done for ML-KEM, but this does not scale well

to schemes that use larger primes, such as Dilithium/ML-DSA. We

use the above scenario as motivation to showcase the advantages

of our approach.

Bridging imperative and algebraic NTT specifications. We

create in EasyCrypt a general theory that relates imperative speci-

fications of the NTT as given in FIPS-203, and used in the formal

specification ofML-KEM in [1, 3], to the CRT-based algebraic specifi-

cation used in CryptoLine. This result, combined with the algebraic

post-condition established automatically by CryptoLine for the

Jasmin code, yields an alternative proof of functional correctness

for the NTT. Crucially, the proof effort required to establish the

relation between the imperative and algebraic specifications can be

amortized for other implementations of the ML-KEM NTT and for

other polynomial-ring based constructions such as ML-DSA.
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The

listing in Figure 11 shows the four EasyCrypt lemmas that permit

obtaining the desired result. The ntt_equiv lemma shows that the

annotated Jasmin program Poly_ntt.M._poly_ntt that was proved using

CryptoLine is equivalent to the Jasmin implementation for which

we want the final theorem to hold Poly_ntt_orig.M._poly_ntt. Here the

equivalence is not a syntactic identity because we needed to replace

while loops with unrollable for loops, but the proof is nevertheless

straightforward. The _poly_ntt_spec_p lemma is the total correctness

version of the CryptoLine result, which we obtain simply by prov-

ing termination; again, a straightforward proof. Note that, from

CryptoLine we not only get the algebraic specification, but also a

range contract that sets the admissible bounds of inputs and the

enforced bounds at the outputs. Finally, the main lemma ntt_correct

is obtained as a consequence of the above lemmas, and the fact that

the ntt operator that captures the semantics of imperative specifi-

cation is equivalent to the algebraic specification by the result in

lemma ntt_correct_core.

Proving parts of the call-tree in EasyCrypt. We show in Fig-

ure 12 how, in EasyCrypt, we can complete a CryptoLine proof

of the NTT function in which the correctness of field multiplica-

tion and Barrett reduction subroutines was assumed. Concretely,

lemma trans_reduce expresses a relational contract between func-

tion M.__barrett_reduce and function Poly_ntt_orig.M.__barrett_reduce. The

latter function has been proved in EasyCrypt to satisfy the re-

quired contract—the name of this lemma is Fq.barrett_reduce_corr_h.

The former function includes an annotated assume statement of the

10
For example, we reuse this result for a CryptoLine-based proof of the AVX2 imple-

mentation of the ML-KEM NTT, as we will describe later in the paper.
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fn _poly_ntt(reg ptr u16[MLKEM_N] rp)→
reg ptr u16[MLKEM_N] {

zetasp = jzetas; zetasctr = 0; len = 128;

while (len >= 2) {

start = 0;

while (start < 256) {

zetasctr += 1; zeta = zetasp[(int)zetasctr];

j = start; cmp = start; cmp += len;

while (j < cmp) {

s = rp[(int)j]; m = s; offset = j; offset += len;

t = rp[(int)offset]; t = __fqmul(t, zeta); m -= t; t += s;

rp[(int)offset] = m; rp[(int)j] = t; j += 1;

} start = j; start += len;

} len >>= 1; }

rp = __poly_reduce(rp); return rp; }

Figure 10: NTT as specified in FIPS203 (left) and Jasmin reference implementation (right).

lemma ntt_equiv :
equiv [ Poly_ntt_orig.M._poly_ntt ∼ Poly_ntt.M._poly_ntt : ={arg}⇛ res{1} = res{2}.`1 ].

lemma _poly_ntt_spec_p _rp:
phoare [Poly_ntt.M._poly_ntt : _rp = arg ∧
foldr (fun (x acc : bool)⇒ x ∧ acc) true (map (fun (ii : int)⇒

(W16.of_int ((−2) ∗ 3329) \sle arg[ii]) ∧
(arg[ii] \slt W16.of_int (2 ∗ 3329))) (iota_ 0 256))⇛

foldr (fun (x acc : bool)⇒ x ∧ acc) true
(map (fun (ii : int)⇒ (W16.zero \sle res.`1[ii]) ∧

(res.`1[ii] \slt W16.of_int (2∗3329))) (iota_ 0 256)) ∧
foldr (fun (x acc : bool)⇒ x ∧ acc) true (map (fun (pp : int)⇒
eqmod (foldr (fun (x acc : poly)⇒ x + acc) (mon0 0)
(map (fun (ii : int)⇒ mon 0 ii (u16i _rp[ii])) (iota_ 0 256)))
(mon0 (u16i res.`1[pp ∗ 2]) + mon 0 1 (u16i res.`1[pp ∗ 2 + 1])) (pair (mon0 3329)

(mon 0 2 1 − mon0 (u16i Poly_ntt.zetas_power[pp])))) (iota_ 0 128))] = 1%r

lemma ntt_correct_core (_r : Zq.coeff Array256.t) (_rp p: W16.t Array256.t) :
_r = lift_array256 _rp⇒
foldr (fun (x acc : bool)⇒ x ∧ acc) true
(map (fun (pp : int)⇒ eqmod (foldr (fun (x acc : poly)⇒ x + acc) (mon0 0)

(map (fun (ii : int)⇒ mon 0 ii (u16i _rp[ii])) (iota_ 0 256)))
(mon0 (u16i p[pp ∗ 2]) + mon 0 1 (u16i p[pp ∗ 2 + 1])) (pair (mon0 3329)
(mon 0 2 1 − mon0 (u16i zetas_power[pp])))) (iota_ 0 128))⇒ ntt _r = lift_array256 p.

lemma ntt_correct _r :
phoare[M._poly_ntt :

_r = lift_array256 rp ∧ signed_bound_cxq rp 0 256 2 ⇛ ntt _r = lift_array256 res ∧
∀ k, 0≤k<256⇒ bpos16 res[k] (2∗q)] = 1%r.

exlim rp⇒ _rp; conseq ntt_equiv (_poly_ntt_spec_p _rp).

Figure 11: EasyCrypt lemmas for NTT functional correctnes.

post-condition immediately before the return statement, which

guarantees a trivial proof in CryptoLine.

The relational contract establishes a bridge between the known

result for the returned value of Poly_ntt_orig.M.__barrett_reduce and the

unproved assumption in CryptoLine. Here, we leverage the fact

that the semantics of CryptoLine assert and assume statements

are captured by global variables in EasyCrypt: this allows us to

refer to predicates that are evaluated in the middle of the annotated

program (in this case just before the return statement) and relate

them to the outputs of the program we have proved in EasyCrypt.

Concretely, the trans_reduce lemma says that, if both functions start

from the same input, then both will produce the same result but,

moreover, the flag that encodes the assumed predicate res1.`2.`3 is

equivalent to the post-condition over the result. This permits deriv-

ing a proof for the assumed predicate in lemma __barrett_reduce_assume

simply as a consequence of the above relation and the fact that the

result of the Poly_ntt_orig.M.__barrett_reduce function has already been

shown to be correct.

equiv trans_reduce _a : M.__barrett_reduce ∼ Poly_ntt_orig.M.__barrett_reduce :
={arg} ∧ to_sint arg{1} = _a
⇛ res{1}.`1 = res{2} ∧
(validk Assume res{1}.`2⇔ (((((W16.of_int 0) \sle res{1}.`1) ∧
(res{1}.`1 \slt (W16.of_int (2∗3329))))) ∧ (eqmod_int (u16i res{1}.`1) (_a) 3329))).

lemma __barrett_reduce_assume :
hoare [M.__barrett_reduce : true⇛ (assume_proof_ res)].

proof.
exlim arg⇒ _a.
conseq (trans_reduce (to_sint _a)) (Fq.barrett_reduce_corr_h (to_sint _a)) .

Figure 12: EasyCrypt proof of leaf functions.

Extension to vectorized instructions. We now describe further

extensions to our generation of CryptoLine proofs from annotated

Jasmin programs that allow us to take advantage of the vector-

ized extension to CryptoLine. The motivating example is the AVX2

implementation of the NTT. The reference implementation of the

NTT function that we discussed in Section 8 doesn’t fully show

the advantages of the automation offered by CryptoLine wrt a fully

interactive proof in EasyCrypt. This is because, as we mentioned

above, the specification and implementation are close enough to

allow an interactive proof with reasonable effort. This is not the
case for the AVX2 implementation, where there is no discernable

relation between the control flow of the specification and the im-

plementation. For this reason, being able to establish automatically

that the implementation computes the algebraic specification in-

deed provides a huge benefit wrt to the overall proof effort required

for an interactive proof. However, the use of vectorized instructions

in this implementation requires that we enrich our interaction with

CryptoLine to permit reasoning about vectorized instructions. We

first briefly explain the support CryptoLine provides at this level.

Vectorized instructions in CryptoLine. CryptoLine does not
have support for architecture-specific vectorized extensions such as

AVX2. Instead, CryptoLine offers a generic mechanism to describe

programs that rely on vectorized operations. This mechanism, in

very short terms, works as follows. Program variables can be typed

as vectors of scalar variables, e.g., one can initialize a variable %𝑣 ,

whereby the percentage symbol denotes a vector, with a list of

scalar variables [𝑣1, . . . , 𝑣𝑛], where all variables in the vector must

be of the same CryptoLine type. Conversely, a vector %𝑣 can be

assigned to a list of scalar variables of the appropriate type, or it can

be cast into a list of variables of different types, conditionally on the

natural size restrictions being satisfied. Furthermore, CryptoLine

offers the natural lift of scalar operations to vectors by interpreting
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their application pointwise. The vectorized instruction is signalled

with a % sign. Operations that break the trivial parallel computa-

tion pattern can be emulated by unserializing a vector into a set

of scalar variables and performing computations over the scalar

variables using the standard CryptoLine approach. For example,

a permutation can be modelled by assigning the vector to scalar

variables and initializing a new vector with the permuted scalars.

The problem. A simplified Jasmin program with vector instruc-

tions does not necessarily have a natural pretty-printed CryptoLine

counterpart. The problem is that a CryptoLine vector variable has a

fixed type for its contents, whereas a long register in Jasmin can be

used as an input to instructions that will handle its contents with

different vector types. One possible solution to this problem would

be to take the (certified) simplification of the Jasmin program one

step further and convert it into a scalar program over which we

could apply the approach we described in the previous examples.

This is a route we leave to explore in future work. In this paper, we

give a simple solution that requires placing a slightly more trust in

the pretty printing routine.

Our solution. Weenrich our translation to CryptoLinewith knowl-

edge on how how each AVX2 instruction interprets the vector reg-

ister as a list of scalar values of specific size (e.g VPADD_16u16
treats a 256-bit register as a vector of 16x16-bit values). This means

that we can guarantee the generation of a well-typed CryptoLine

program as follows. We maintain the invariant that all variables of a

long word type (i.e. greater than the machine word size) are initial-

ized in CryptoLine as vector variables on their first assignment, i.e.

their type is defined by the operation that first assigns to them.
11

Then, each AVX2 instruction is pretty printed as follows: for each

vector input argument, it uses the cast operation in CryptoLine to

create a list of scalar variables representing the input. The types of

these scalar variables are determined by the AVX2 instruction that

will be computed. These scalar variables are then packed into a new

(fresh variable) vector input that can be passed to the vectorized

CryptoLine instruction. In this way, even if adjacent AVX2 instruc-

tions are processing long registers with different vector granularity,

the output CryptoLine program will be valid. The disadvantage of

this approach is that the resulting program may certainly include

unnecessary cast operations: this will happen whenever two adja-

cent vector instructions are operating over the same sub-word size

(e.g. VPADD_16u16 followed by VPSUB_16u16). In order to reduce

the complexity of the model, we introduced a non-verified simplifi-

cation in our pretty-printing routine that identifies and removes

redundant casts. This simple heuristic works well for the AVX2

implementation of the NTT, which is very well behaved wrt its use

of SIMD operations—all vectorized instructions work over 256-bit

words seen as 16x16-bit sub-words, so essentially all casts are re-

moved. A final extension to the pretty-printing mechanism was

necessary to allow writing Jasmin annotations and contracts that

refer to sub-words of long inputs and outputs. To this end, we allow

the Jazzline user to annotate the types of long inputs and outputs

to functions with their corresponding vector type and introduce

abstract predicates that permit referring to subwords in the syn-

tax of both range and algebraic predicates. This meta-information

11
The exception here are input and output variables, which we explain later.

informs the pretty-printing mechanism of how long inputs and out-

puts to a Jasmin function should be partitioned into scalar variables:

the resulting CryptoLine program takes scalar variables as inputs

and outputs, so its contract is written in a purely scalar form. The

first/last instructions in the pretty-printed program perform the

necessary packing/unpacking to guarantee consistency. Similarly,

assert and assume annotations are expressed over scalar variables

resulting from unpacking instructions.

The proof. To demonstrate the feasiblity of this extension we tar-

geted the NTT implementation of ML-KEM-768. The approach here

largely follows the one described for the reference implementation

of the same function, the main difference being the way the pre-

and post-conditions are specified. As stated previously, the use of

input polynomials as arrays of vector registers instead of arrays

of scalar values, requires us to use an unpacking predicate (in this

case u256_as_16u16) and nested big operators in order to index

each coefficient individually. The use of EasyCrypt in the proof

of the AVX2 function is very close to what we described for the

scalar version of the algorithm. Matching the algebraic contract

resulting from the CryptoLine proof to the intended EasyCrypt

contract follows by applying the same lemma relating the algebraic

definition of the NTT to its imperative specification. We also fac-

tored out the proof of the Barrett reduction step into a proof goal

that was assumed in CryptoLine and discharged interactively in

EasyCrypt. Moreover, we did the same for some subroutines that

are performing sequences of permutations in order to reshuffle in-

termediate values. The take-awaymessage from this example is that

our approach is conceptually general enough to allow reusing Cryp-

toLine proofs relying on vectorized instructions for similar Jasmin

programs. However, we have also learned that extending the frame-

work to support the wide variety of SIMD instructions included in

various architectures will give rise to a complex pretty-printer. As

mentioned above, to avoid that, we plan to explore certified com-

pilation steps that generically convert vectorized programs into

equivalent scalar ones.

9 Conclusion
In this paper we show that it is possible to integrate two formal

verification frameworks, in a sound way, to enable proofs that

explore the advantages of both. This permits amortizing proof

effort, and allows for collaborative work in proof development using

different formal verification approaches. As illustration of this fact

we present a functionally correct high-speed implementation of

X-Wing in Jasmin, where we reused proofs initially done using

CryptoLine. In future work we plan to extend the Jasmin compiler

to cover a wider range of programs in simplification, and to explore

the possibility of automatically transform vectorized instructions

into scalar ones in a certified way.
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A Background on CryptoLine
We give a summary of the main Cryptoline features and refer the

interested reader to [10, 14] for the full details.

Types represent unsigned and signed bitwords of fixed width. For

width𝑤 , they are inhabitted by integers 𝑖 in the range 0 ≤ 𝑖 < 2
𝑤

for uint and −2𝑤−1 ≤ 𝑖 < 2
𝑤−1

for sint. A CryptoLine program

consists of variable declarations followed by instructions. A typical

instruction retrieves values from sources/atoms and stores them in

destinations/variables. An atom is either a variable or a constant.

Instructions include operations that are pervasive across architec-

tures. Other instructions, such as splitting and joining bitwords to

obtain bitwords of different sizes, can be used to model additional

processor operations. assert and assume instructions can also occur

at any point in a program, both expressed as the conjunction of

two types of predicates: range predicates and algebraic predicates.

We consider only straight-line CryptoLine programs.

The CryptoLine type system is, for themost part, straightforward.

Many operations, namely arithmetic instructions, are closed over

the type (i.e. word size and signedness). Unsigned operations have

the expected typing, and only for signed operations there are some

important nuances that aim to guarantee consistency with the

interpretation over the integers of the behavior of some operations.

The semantics of CryptoLine are standard when it comes to

statements/instructions. The interpretation of the value of a variable

depends on its type. The semantics of instructions are defined

by interpreting the inputs as integers, performing a computation

over the integers, and then injecting the result back into one or

more bitwords of the correct types. If the integer result cannot be

represented in the output variables, this yields an explicit error.

The semantics of an assert statement is to leave the current state

unchanged if the associated predicate evaluates to true in this state,

and an error otherwise. The semantics of an assume statement

is to leave the current state unchanged if the associated predicate

evaluates to true in this state, and it is undefined behavior otherwise

(for simplicity, one can think of assuming false as an instruction that

blocks the execution of the program). Note that in the CryptoLine

semantics, the evaluation of algebraic predicates is carried out over

the integers. For range predicates, the predicate validity is checked

directly over bit-vectors.

CryptoLine is geared towards automatic verification using two

families of tools: SMT solvers supporting the bit vector theory

SMT-LIB2, and Computer Algebra Systems (CAS). The CryptoLine

tool can convert a partial correctness Hoare triple proof goal for

a CryptoLine program into a set of sufficient proof obligations.

Note that partial correctness here means that the post-condition

holds whenever the evaluation of the program reached a final state.

Because the program is straight-line and verified to be safe, the only

possible cause for not reaching a final state is blocking due to the

attempt to evaluate an assume statement which turns out to be false.

Proof obligations associated with range predicates are discharged

using SMT solvers. Obligations associated with algebraic predicates

are discharged using CAS. The safety of a CryptoLine program

is proved using a dedicated verification condition generator that

checks for the property that the CryptoLine program does not

terminate in an error state.
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